Ensino Fundamental
 Ensino Médio
 Ensino Superior
 Trabalhos de Alunos
 Matemática Financeira
 Estatística
 Biografias Matemáticas
 História da Matemática
 Laifis de Matemática
 Softwares Matemáticos
 Softwares Online

 Shopping Matemático
 Só Vestibular
 Super Professor

 Só Exercícios
 Desafios Matemáticos
 Matkids
 Provas de Vestibular
 Provas Online

 Área dos Professores
 Comunidade
 Fóruns de Discussão
 Artigos Matemáticos
 Dicionário Matemático
 FAQ Matemática
 Dicas para Cálculos

 Jogos Matemáticos
 Mundo Matemático
 Histórias dos Usuários
 Curiosidades
 Absurdos Matemáticos
 Pérolas da Matemática
 Paradoxos
 Piadas
 Poemas
 Palíndromos

 Indicação de Livros
 Símbolos Matemáticos
 Frases Matemáticas
 Fale conosco

Busca geral

Pesquisa em todas as seções do site.


Gostou do site?

Recomende-o para um amigo.

Seu nome:

Nome do seu amigo:

E-mail do seu amigo:


Indicação de livros

Consulte periodicamente as obras indicadas.


Geometria Espacial

Relação de Euler

      Em todo poliedro convexo é válida a relação seguinte:

V - A + F = 2

em que V é o número de vértices, A é o número de arestas e F, o número de faces.

Observe os exemplos:

V=8   A=12    F=6

8 - 12 + 6 = 2

V = 12  A = 18   F = 8

12 - 18 + 8 = 2

 

 

Poliedros platônicos

      Diz-se que um poliedro é platônico se, e somente se:

a) for convexo;

b) em todo vértice concorrer o mesmo número de arestas;

c) toda face tiver o mesmo número de arestas;

d) for válida a relação de Euler.

       Assim, nas figuras acima, o  primeiro poliedro é platônico e o segundo, não-platônico.

 

Prismas

       Na figura abaixo, temos dois planos paralelos e distintos, , um polígono convexo R contido em e uma reta r que intercepta , mas não R:

      Para cada ponto P da região R, vamos considerar o segmento , paralelo à reta r :

      Assim, temos:

      Chamamos de prisma ou prisma limitado o conjunto de todos os segmentos congruentes paralelos a r.

        

<< Voltar para seção Ensino médio

 

Curta nossa página nas redes sociais!


Chegou o DVD Matemática nas Profissões. Detalhes.

 

Mais produtos