Ensino Fundamental
 Ensino Médio
 Ensino Superior
 Trabalhos de Alunos
 Matemática Financeira
 Estatística
 Biografias Matemáticas
 História da Matemática
 Laifis de Matemática
 Softwares Matemáticos
 Softwares Online

 Shopping Matemático
 Só Vestibular
 Super Professor

 Só Exercícios
 Desafios Matemáticos
 Matkids
 Provas de Vestibular
 Provas Online

 Área dos Professores
 Comunidade
 Fóruns de Discussão
 Artigos Matemáticos
 Dicionário Matemático
 FAQ Matemática
 Dicas para Cálculos

 Jogos Matemáticos
 Mundo Matemático
 Histórias dos Usuários
 Curiosidades
 Absurdos Matemáticos
 Pérolas da Matemática
 Paradoxos
 Piadas
 Poemas
 Palíndromos

 Indicação de Livros
 Símbolos Matemáticos
 Frases Matemáticas
 Fale conosco

Busca geral

Pesquisa em todas as seções do site.


Gostou do site?

Recomende-o para um amigo.

Seu nome:

Nome do seu amigo:

E-mail do seu amigo:


Indicação de livros

Consulte periodicamente as obras indicadas.


Funções Logarítmica e Exponencial
   

DERIVADAS DAS FUNÇÕES TRIGONOMÉTRICAS INVERSAS

Um problema comum em trigonometria é achar um ângulo cujas funções trigonométricas são conhecidas. Problemas deste tipo envolvem a computação de funções arco, tais como arcsen x, arccos x, arctg x, e assim por diante. Consideremos esta idéia do ponto de vista de funções inversas, com a meta de desenvolver fórmulas de derivadas para as funções trigonométricas inversas.
   

  • IDENTIDADES PARA FUNÇÕES TRIGONOMÉTRICAS INVERSAS  

      Se interpretamos  x como um ângulo medido em radianos cujo seno é x, e se aquele ângulo for não negativo, então podemos representar  x como um ângulo em um triângulo retângulo, no qual a hipotenusa tem comprimento 1 e o lado oposto ao ângulo de  tem comprimento x (figura a). Pelo Teorema de Pitágoras, o lado adjacente para o ângulo   tem comprimento . Além disso, a ângulo oposto a   é , uma vez que o co-seno daquele ângulo é x (figura b). Este triângulo motiva várias identidades úteis, envolvendo funções trigonométricas que são válidas para  . Por exemplo:

Analogamente, x e x podem ser representadas com ângulos de triângulos retângulos mostrados na figura c e d. Esses triângulos revelam mais identidades úteis, como por exemplo:

 

OBSERVAÇÃO. Não se ganha nada memorizando estas identidades; o que é importante é compreender o método usado para obtê-las.

Exemplo

A figura abaixo mostra um gráfico gerado por um computador de y = (sen x). Pode se pensar que este gráfico deva ser a reta y = x, uma vez que (sen x) = x. Por que isto não acontece?

Solução. A relação (sen x) = x é válida no intervalo ; logo podemos dizer, com certeza, que os gráficos de y = (sen x) e y = x coincidem neste intervalo. Contudo, fora deste intervalo, a relação   (sen x) = x não precisa ser válida. Por exemplo, se estiver no intervalo , então a quantidade x estará no intervalo . Assim

Desta forma,usando a identidade sen(x-) = -sen x e o fato de que  é uma função ímpar, podemos expressar      (sen x) como

Isso mostra que no intervalo , o gráfico de y =  (sen x) coincide com a reta y = -(x-), a qual tem inclinação -1 e um intercepto x em x = , o que está de acordo com a figura.

 

  • DERIVADAS DE FUNÇÕES TRIGONOMÉTRICAS INVERSAS

Lembre-se que se f for uma função um a um, cuja a derivada é conhecida, então há duas maneiras básicas para obter uma fórmula de derivação para (x), podemos reescrever a equação y(x) como x = f(y), e diferenciar implicitamente. Usaremos a diferenciação implícita para obter a fórmula de derivação para y x. Reescrevendo esta equação como x = sen y e diferenciando implicitamente, obtemos 

Esta fórmula de derivada pode ser simplificada aplicando-se a fórmula , que foi deduzida a partir do triângulo da figura, resultando:

Assim, mostramos que 

Se u for uma função diferenciável de x, então  e a regra da cadeia produzem a seguinte fórmula generalizada da derivada

O método usado para obter esta fórmula pode também ser usado para obter fórmulas generalizadas de derivadas para outras funções trigonométricas inversas. Estas fórmulas, válidas para -1< u < 1, são

       

<< Voltar para Ensino Superior

 

Curta nossa página nas redes sociais!


Chegou o DVD Matemática nas Profissões. Detalhes.

 

Mais produtos