Equações diferenciais

Se y é uma função de x, e n é um inteiro positivo, então uma relação de igualdade (que não se reduz a uma identidade) que envolva x, y, y', y'', ...,y(n)   é chamada uma equação diferencial de ordem n.
 

Equação diferencial é uma equação que apresenta derivadas ou diferenciais de uma função desconhecida (a incógnita da equação).

 
Classificação

  • Equação Diferencial Ordinária (EDO): Envolve derivadas de uma função de uma só variável independente.
     
  • Equação Diferencial Parcial (EDP): Envolve derivadas parciais de uma função de mais de uma variável independente.

Ordem: é a ordem da derivada de mais alta ordem da função incógnita que figura na equação.

Exemplos

y' = 2x

tem ordem 1 e grau 1
y"+x2(y')3 - 40y = 0 tem ordem 2 e grau 3

y"'+x2y3 = x.tanx

tem ordem 3 e grau 3

Resolução

A solução de uma equação diferencial é uma função que não contém derivadas nem diferenciais e que satisfaz a equação dada (ou seja, a função que, substituída na equação dada, a transforma em uma identidade).

Ex: Equação diferencial ordinária: = 3x2 - 4x + 1

dy = (3x2 - 4x + 1) dx

dy = 3 x2dx - 4 xdx + dx + C

y = x3 - 2x2 + x + C  (solução geral)

Uma solução particular pode ser obtida da geral através, por exemplo, da condição y(-1) = 3

(condição inicial)

3 = -1 - 2 - 1 + C C = 7 y = x3 - 2x2 + x + 7 (solução particular)

Observação: Em qualquer dos dois casos, a prova pode ser feita derivando a solução e, com isso, voltando à equação dada.

As soluções se classificam em:

Solução geral - apresenta n constantes independentes entre si (n = ordem da EDO). Essas constantes, de acordo com a conveniência, podem ser escritas C, 2C, C2, lnC, 

Solução particular - Obtida da geral, mediante condições dadas (chamadas condições iniciais ou condições de contorno).

Como referenciar: "Equações diferenciais" em Só Matemática. Virtuous Tecnologia da Informação, 1998-2018. Consultado em 16/01/2018 às 13:51. Disponível na Internet em https://www.somatematica.com.br/superior/equacoesdif/eq.php