Função quadrática ou função do 2º grau

Definição

Chama-se função quadrática, ou função polinomial do 2º grau, qualquer função f de IR em IR dada por uma lei da forma f(x) = ax2 + bx + c, onde a, b e c são números reais e a 0. Vejamos alguns exemplos de funções quadráticas:

  • f(x) = 3x2 - 4x  + 1, onde a = 3, b = - 4 e c = 1
  • f(x) = x2 -1, onde a = 1, b = 0 e c = -1
  • f(x) = 2x2 + 3x + 5, onde a = 2, b = 3 e c = 5
  • f(x) = - x2 + 8x, onde a = -1, b = 8 e c = 0
  • f(x) = -4x2, onde a = - 4, b = 0 e c = 0

Gráfico

O gráfico de uma função polinomial do 2º grau, y = ax2 + bx + c, com a 0, é uma curva chamada parábola.

Por exemplo, vamos construir o gráfico da função y = x2 + x:

Primeiro atribuímos a x alguns valores, depois calculamos o valor correspondente de y e, em seguida, ligamos os pontos assim obtidos.

x y
-3 6
-2 2
-1 0
0 0
1 2
2 6

Observação:

Ao construir o gráfico de uma função quadrática y = ax2 + bx + c, notaremos sempre que:

  • se   a > 0, a parábola tem a concavidade voltada para cima;

  • se   a < 0, a parábola tem a concavidade voltada para baixo;

Como referenciar: "Função quadrática" em Só Matemática. Virtuous Tecnologia da Informação, 1998-2018. Consultado em 19/01/2018 às 11:53. Disponível na Internet em https://www.somatematica.com.br/emedio/funcao2/funcao2.php