Matemática e Música: em busca da harmonia (parte 2)

Qualquer movimento vibratório de ar na entrada do ouvido corresponde a um tom musical que pode ser sempre e de maneira única exibido como uma soma de um número infinito de movimentos vibratórios simples, correspondendo aos sons parciais deste tom musical. As primeiras componentes na Série Harmônica correspondem às frequências associadas aos primeiros termos da Série de Fourier que determinam portanto razões de pequenos números inteiros relacionados às consonâncias pitagóricas, tanto uma corda como colunas de ar em instrumentos de sopro possuem a característica de vibrar não apenas como um todo, mas ainda simultaneamente como duas metades, três terços, quatro quartos e etc.

Do ponto de vista matemático, observa-se que a força de cada harmônico contribuirá para a construção da forma da vibração periódica que se relaciona com o timbre do som.

Nos instrumentos musicais, exploram-se e utilizam-se harmônicos de diversas maneiras, os instrumentos de sopro obtêm harmônicos de um determinado som soprando-o com maior intensidade, enquanto que os executantes de instrumentos de corda podem fazer uma única corda vibrar em seções correspondentes a determinado harmônicos, tocando levemente em pontos de máximo que inibem harmônicos inferiores.

2. Origem da Matemática e da Música

Em quase todos os povos da Antiguidade encontram-se manifestações destes dois campos em separados. O poder conquistador da música já se expressa na mitologia grega em Orfeu, cujo canto acompanhado de lira sustava os rios, amansava feras e movia pedras. A matemática também se faz presente desde os tempos mais remotos, por exemplo na contagem das coisas. A interação entre essas áreas torna-se fortemente manifesta a partir da necessidade de equacionar e solucionar problemas da consonância, no sentido de buscar fundamentos científicos capazes de justificar tal conceito.

Com relação à organização de escalas musicais, esta ocorreu de diversas maneiras em diferentes povos e épocas, porém com alguns aspectos em comum. Os gregos desenvolveram os tetracordes e depois escalas com sete tons.

Teóricos musicais como Pitágoras, Arquitas, Aristoxeno, Erastóstenes se dedicaram à construção de escalas desenvolvendo diferentes critérios de afinidade. Por exemplo, valorizando os intervalos de quinta perfeitas, bem como a utilização somente de números de 1 a 4 na obtenção das frações da corda para gerar as notas da escala, Pitágoras estabeleceu uma afinação utilizando percursos de quinta para a obtenção das notas da escala.

Arquitas constrói sua escala baseada em frações da corda resultantes de medias harmônicas e aritméticas daquelas encontradas por Pitágoras no experimento do monocórdio. Já Erastóstenes elaborou a diferenciação entre intervalos calculados aritmeticamente a maneira de Aristoxeno, de intervalos calculados pela razão.

2.1. O experimento do monocórdio e a música na escola pitagórica

Os primeiros sinais de casamento entre a matemática e a música surgem no século VI a.C. quando Pitágoras através de experiências com sons do monocórdio, efetua uma de suas mais belas descobertas, que dá à luz, na época, ao quarto ramo da matemática: a música.

Os principais teóricos musicais da escola Pitagórica foram Pitágoras e Filolau no período pré-clássico, bem como Arquitas, Aristoxeno e Aristóteles no período clássico.

Possivelmente inventado por Pitágoras, o monocórdio é um instrumento composto por uma única corda estendida entre dois cavaletes fixos sobre uma prancha ou mesa possuindo, ainda, um cavalete móvel colocado sob a corda estendida e a altura musical do som emitido quando tocada. Pitágoras buscava relações de comprimentos – razões de números inteiros – que produzissem determinados intervalos sonoros. Deu continuidade a seus experimentos investigando a relação entre o comprimento de uma corda vibrante e o tom musical produzido por ela. Este experimento de Pitágoras é a primeira experiência registrada na história da ciência, no sentido de isolar algum dispositivo para observar fenômenos de forma artificial.

Pitágoras observou que pressionando um ponto situado a ¾ do comprimento da corda em relação a sua extremidade – o que equivale a reduzi-la a ¾ de seu tamanho original – e tocando-a a seguir, ouvia-se uma quarta acima do tom emitido pela corda inteira. Exercida a pressão a 2/3 do tamanho original da corda, ouvia-se uma quinta acima e a ½ obtinha-se a oitava do som original.

A partir desta experiência, os intervalos passam a denominar-se consonâncias pitagóricas. Assim, se o comprimento original da corda for 12 e se a reduzirmos para 9, ouviremos a quarta, para 8, a quinta, para 6, a oitava.

     

<< VOLTAR

Como referenciar: "Matemática e Música (parte 2)" em Só Matemática. Virtuous Tecnologia da Informação, 1998-2020. Consultado em 23/02/2020 às 06:15. Disponível na Internet em https://www.somatematica.com.br/mundo/musica2.php

Divirta-se com o LOBIS HOMEM

CARNAVAL LOBELEZA

O SONHO DE SER CANTOR