Você está em Entretenimento > Desafios

Resposta do desafio 119

O relógio adiantado de Beatriz

Sabemos que a cada hora o ponteiro dos minutos dá uma volta de 360º no relógio, isto é, 6º por minuto. Quanto ao ponteiro das horas, ele gira 30º (que é o ângulo entre duas marcas de hora) por hora. Ou seja, 1º a cada 2 minutos, ou meio grau por minuto.

Vamos representar pela letra t o tempo que os ponteiros levam para se sobrepor depois de terem se cruzado uma vez e de percorrer o relógio até um novo encontro.

Então, o avanço do ponteiro dos minutos pode ser representado pela expressão 6t–360º e o das horas por (1/2)t. Igualando-se as expressões, temos:

6t – 360º = (1/2)t

t = 65,4545 minutos

Como no relógio de Beatriz os ponteiros demoram 65 minutos para se reencontrar, ele adianta 0,4545 minuto, ou seja, 27,27 segundos a cada hora.

Voltar para o enunciado

<< Anterior
Desafio 118
Dividindo os camelos
Próximo >>
Desafio 120
O fogo na corda
Como referenciar: "O relógio adiantado de Beatriz" em Só Matemática. Virtuous Tecnologia da Informação, 1998-2020. Consultado em 26/01/2020 às 14:54. Disponível na Internet em https://www.somatematica.com.br/desafios/soldes119.php

Divirta-se com o LOBIS HOMEM

O SONHO DE SER CANTOR

SOFRENDO COM A LÍNGUA PORTUGUESA