Ensino Fundamental
 Ensino Médio
 Ensino Superior
 Trabalhos de Alunos
 Matemática Financeira
 Estatística
 Biografias Matemáticas
 História da Matemática
 Laifis de Matemática
 Softwares Matemáticos
 Softwares Online

 Shopping Matemático
 Só Vestibular
 Super Professor

 Só Exercícios
 Desafios Matemáticos
 Matkids
 Provas de Vestibular
 Provas Online

 Área dos Professores
 Comunidade
 Fóruns de Discussão
 Artigos Matemáticos
 Dicionário Matemático
 FAQ Matemática
 Dicas para Cálculos

 Jogos Matemáticos
 Mundo Matemático
 Histórias dos Usuários
 Curiosidades
 Absurdos Matemáticos
 Pérolas da Matemática
 Paradoxos
 Piadas
 Poemas
 Palíndromos

 Indicação de Livros
 Símbolos Matemáticos
 Frases Matemáticas
 Fale conosco

Busca geral

Pesquisa em todas as seções do site.


Gostou do site?

Recomende-o para um amigo.

Seu nome:

Nome do seu amigo:

E-mail do seu amigo:


Indicação de livros

Consulte periodicamente as obras indicadas.


Mínimo Múltiplo Comum

  • MÚLTIPLO DE UM NÚMERO NATURAL

        Como 24 é divisível por 3 dizemos que 24 é múltiplo de 3.
        24 também é múltiplo de 1, 2, 3, 4, 6, 8, 12 e 24.

Se um número é divisível por outro, diferente de zero, então
dizemos que ele é múltiplo desse outro.

        Os múltiplos de um número são calculados multiplicando-se esse número pelos números naturais.

        Exemplo: os múltiplos de 7 são:
                            7x0 , 7x1, 7x2 , 7x3 , 7x4 , ...  =  0 , 7 , 14 , 21 , 28 , ...

        Observações importantes:
        1) Um número tem infinitos múltiplos
        2) Zero é múltiplo de qualquer número natural

 

  • MÍNIMO MÚLTIPLO COMUM (M.M.C.)

            Dois ou mais números sempre têm múltiplos comuns a eles.

            Vamos achar os múltiplos comuns de 4 e 6:
            Múltiplos de 60, 6, 12, 18, 24, 30,...
            Múltiplos de 40, 4, 8, 12, 16, 20, 24,...
            Múltiplos comuns de 4 e 60, 12, 24,...

            Dentre estes múltiplos, diferentes de zero, 12 é o menor deles. Chamamos o 12 de mínimo múltiplo comum de 4 e 6.

O menor múltiplo comum de dois ou mais números, diferente de zero, é chamado de mínimo múltiplo comum desses números. Usamos a abreviação m.m.c.

 

  • CÁLCULO DO M.M.C.

            Podemos calcular o m.m.c. de dois ou mais números utilizando a fatoração. Acompanhe o cálculo do m.m.c. de 12 e 30:

    1º) decompomos os números em fatores primos
    2º) o m.m.c. é o produto dos fatores primos comuns e não-comuns:

                   12   =  2  x  2  x  3
                   30   =          2  x  3   x  5
        m.m.c (12,30)  = 2  x  2  x  3   x  5

        Escrevendo a fatoração dos números na forma de potência, temos:
        12 = 22  x  3
        30 = 2   x  3  x  5

        m.m.c (12,30)  = 22  x  3  x  5

O m.m.c. de dois ou mais números, quando fatorados, é o produto dos fatores
comuns e não-comuns a eles, cada um elevado ao maior expoente.

   

  • PROCESSO DA DECOMPOSIÇÃO SIMULTÂNEA
            Neste processo decompomos todos os números ao mesmo tempo, num dispositivo como mostra a figura ao lado. O produto dos fatores primos que obtemos nessa decomposição é o m.m.c. desses números. Ao lado vemos o cálculo do m.m.c.(15,24,60)

            Portanto, m.m.c.(15,24,60) = 2 x 2 x 2 x 3 x 5 = 120

mmc1.jpg (4787 bytes)

 

  • PROPRIEDADE DO M.M.C.

         Entre os números 3, 6 e 30, o número 30 é múltiplo dos outros dois. Neste caso, 30 é o m.m.c.(3,6,30). Observe:

mmc2.jpg (2829 bytes)
m.m.c.(3,6,30) = 2 x 3 x 5 = 30

Dados dois ou mais números, se um deles é múltiplo de todos os outros, então
ele é o m.m.c. dos números dados.


         Considerando os números 4 e 15, ques são primos entre si. O m.m.c.(4,15) é igual a 60, que é o produto de 4 por 15. Observe:

mmc3.jpg (2579 bytes)
m.m.c.(4,15) = 2 x 2 x 3 x 5 = 60

Dados dois números primos entre si, o m.m.c. deles é o produto desses números.

<< Voltar para Ensino Fundamental

Curta nossa página nas redes sociais!


Chegou o DVD Matemática nas Profissões. Detalhes.

 

Mais produtos