Ensino Fundamental
 Ensino Médio
 Ensino Superior
 Trabalhos de Alunos
 Matemática Financeira
 Estatística
 Biografias Matemáticas
 História da Matemática
 Laifis de Matemática
 Softwares Matemáticos
 Softwares Online

 Shopping Matemático
 Só Vestibular
 Super Professor

 Só Exercícios
 Desafios Matemáticos
 Matkids
 Provas de Vestibular
 Provas Online

 Área dos Professores
 Comunidade
 Fóruns de Discussão
 Artigos Matemáticos
 Dicionário Matemático
 FAQ Matemática
 Dicas para Cálculos

 Jogos Matemáticos
 Mundo Matemático
 Histórias dos Usuários
 Curiosidades
 Absurdos Matemáticos
 Pérolas da Matemática
 Paradoxos
 Piadas
 Poemas
 Palíndromos

 Indicação de Livros
 Símbolos Matemáticos
 Frases Matemáticas
 Fale conosco

Busca geral

Pesquisa em todas as seções do site.


Gostou do site?

Recomende-o para um amigo.

Seu nome:

Nome do seu amigo:

E-mail do seu amigo:


Indicação de livros

Consulte periodicamente as obras indicadas.


ORIGEM DOS SINAIS

    Adição ( + ) e subtração ( - )

    O emprego regular do sinal + ( mais ) aparece na Aritmética Comercial de João Widman d'Eger publicada em Leipzig em 1489.
Entretanto, representavam não à adição ou à subtração ou aos números positivos ou negativos, mas aos excessos e aos déficit em problemas de negócio. Os símbolos positivos e negativos vieram somente ter uso geral na Inglaterra depois que foram usados por Robert Recorde em 1557.Os símbolos positivos e negativos foram usados antes de aparecerem na escrita. Por exemplo: foram pintados em tambores para indicar se os tambores estavam cheios ou não.

    Os antigos matemáticos gregos, como se observa na obra de Diofanto, limitavam-se a indicar a adição juntapondo as parcelas - sistema que ainda hoje adotamos quando queremos indicar a soma de um número inteiro com uma fração. Como sinal de operação mais usavam os algebristas italianos a letra P, inicial da palavra latina plus.

 

    Multiplicação ( . ) e divisão ( : )

    O sinal de X, como que indicamos a multiplicação, é relativamente moderno. O matemático inglês Guilherme Oughtred empregou-o pela primeira vez, no livro Clavis Matematicae publicado em 1631. Ainda nesse mesmo ano, Harriot, para indicar também o produto a efetuar, colocava um ponto entre os fatores. Em 1637, Descartes já se limitava a escrever os fatores justapostos, indicando, desse modo abreviado, um produto qualquer. Na obra de Leibniz escontra-se o sinal para indicar multiplicação: esse mesmo símbolo colocado de modo inverso indicava a divisão.

    O ponto foi introduzido como um símbolo para a multiplicação por G. W. Leibniz. Julho em 29, 1698, escreveu em uma carta a John Bernoulli: "eu não gosto de X como um símbolo para a multiplicação, porque é confundida facilmente com x; freqüentemente eu relaciono o produto entre duas quantidades por um ponto . Daí, ao designar a relação uso não um ponto mas dois pontos, que eu uso também para a divisão."
As formas a/b e , indicando a divisão de a por b, são atribuídas aos árabes: Oughtred, e, 1631, colocava um ponto entre o dividendo o divisor. A razão entre duas quantidades é indicada pelo sinal :, que apareceu em 1657 numa obra de Oughtred. O sinal ÷, segundo Rouse Ball, resultou de uma combinação de dois sinais existentes - e :

 

    Sinais de relação ( =, < e > )

    Robert Recorde, matemático inglês, terá sempre o seu nome apontado na história da Matemática por ter sido o primeiro a empregar o sinal = ( igual ) para indicar igualdade. No seu primeiro livro, publicado em 1540, Record colocava o símbolo entre duas expressões iguais; o sinal = ; constituído por dois pequenos traços paralelos, só apareceu em 1557. Comentam alguns autores que nos manuscritos da Idade Média o sinal = aparece como uma abreviatura da palavra est.

    Guilherme Xulander, matemático alemão, indicava a igualdade , em fins do século XVI, por dois pequenos traços paralelos verticais; até então a palavra aequalis aparecia, por extenso, ligando os dois membros da igualdade.

    Os sinais > ( maior que ) e < ( menor que ) são devidos a Thomaz Harriot, que muito contribuiu com seus trabalhos para o desenvolvimento da análise algébrica.

 

<< VOLTAR PARA HISTÓRIA DA MATEMÁTICA

 

 

Curta nossa página nas redes sociais!


Chegou o DVD Matemática nas Profissões. Detalhes.

 

Mais produtos