Ensino Fundamental
 Ensino Médio
 Ensino Superior
 Trabalhos de Alunos
 Matemática Financeira
 Estatística
 Biografias Matemáticas
 História da Matemática
 Laifis de Matemática
 Softwares Matemáticos
 Softwares Online

 Shopping Matemático
 Só Vestibular
 Super Professor

 Só Exercícios
 Desafios Matemáticos
 Matkids
 Provas de Vestibular
 Provas Online

 Área dos Professores
 Comunidade
 Fóruns de Discussão
 Artigos Matemáticos
 Dicionário Matemático
 FAQ Matemática
 Dicas para Cálculos

 Jogos Matemáticos
 Mundo Matemático
 Histórias dos Usuários
 Curiosidades
 Absurdos Matemáticos
 Pérolas da Matemática
 Paradoxos
 Piadas
 Poemas
 Palíndromos

 Indicação de Livros
 Símbolos Matemáticos
 Frases Matemáticas
 Fale conosco

Busca geral

Pesquisa em todas as seções do site.


Gostou do site?

Recomende-o para um amigo.

Seu nome:

Nome do seu amigo:

E-mail do seu amigo:


Indicação de livros

Consulte periodicamente as obras indicadas.


ORIGEM DOS NÚMEROS NEGATIVOS

    O número é um conceito fundamental em Matemática que tomou forma num longo desenvolvimento histórico. A origem e formulação deste conceito ocorreu simultaneamente com o despontar, entenda-se nascimento, e desenvolvimento da Matemática. As atividades práticas do homem, por um lado, e as exigências internas da Matemática por outro determinaram o desenvolvimento do conceito de número. A necessidade de contar objetos levou ao aparecimento do conceito de número Natural. 

    Todas as nações que desenvolveram formas de escrita introduziram o conceito de número Natural e desenvolveram um sistema de contagem. O desenvolvimento subsequente do conceito de número prosseguiu principalmente devido ao próprio desenvolvimento da Matemática. Os números negativos aparecem pela primeira vez na China antiga. Os chineses estavam acostumados a calcular com duas coleções de barras - vermelha para os números positivos e preta para os números negativos.No entanto, não aceitavam a ideia de um número negativo poder ser solução de uma equação. Os Matemáticos indianos descobriram os números negativos quando tentavam formular um algoritmo para a resolução de equações quadráticas. São exemplo disso as contribuições de Brahomagupta, pois a aritmética sistematizada dos números negativos encontra-se pela primeira vez na sua obra. As regras sobre grandezas eram já conhecidas através dos teoremas gregos sobre subtracção, como por exemplo (a -b)(c -d) = ac +bd -ad -bc, mas os hindus converteram-nas em regras numéricas 
sobre números negativos e positivos. 

    Diofanto (Séc. III) operou facilmente com os números negativos. Eles apareciam constantemente em cálculos intermédios em muitos problemas do seu "Aritmetika", no entanto havia certos problemas para o qual as soluções eram valores inteiros negativos como por exemplo:

4 = 4x +20
3x -18 = 5x^2

    Nestas situações Diofanto limitava-se a classificar o problema de absurdo. Nos séculos XVI e XVII, muitos matemáticos europeus não apreciavam os números negativos e, se esses números apareciam nos seus cálculos, eles consideravam-nos falsos ou impossíveis. Exemplo deste facto seria Michael Stifel (1487- 1567) que se recusou a admitir números negativos como raízes de uma equação, chamando-lhes de "numeri absurdi". Cardano usou os números negativos embora chamando-os de "numeri ficti". A situação mudou a partir do (Séc.XVIII) quando foi descoberta uma interpretação geométrica dos números positivos e negativos como sendo segmentos de direções opostas.

 

Demonstração da regra dos sinais (segundo Euler)

    Euler, um virtuoso do cálculo como se constata nos seus artigos científicos pela maneira audaz como manejava os números relativos e sem levantar questões quanto à legitimidade das suas construções forneceu uma explicação ou justificação para a regra os sinais. Consideremos os seus argumentos: 

    1- A multiplicação de uma dívida por um número positivo não oferece dificuldade, pois 3 dívidas de a escudos é uma dívida de 3a escudos, logo (b).(-a) = -ab. 

    2- Por comutatividade, Euler deduziu que (-a).(b) = -ab 
Destes dois argumentos conclui que o produto de uma quantidade positiva por uma quantidade negativa e vice-versa é uma quantidade negativa. 

    3- Resta determinar qual o produto de (-a) por (-b). É evidente diz Euler que o valor absoluto é ab. É pois então necessário decidir-se entre ab ou -ab. Mas como (-a) ´ b é -ab, só resta como única possibilidade que (-a).(-b) = +ab. 
 

É claro que este tipo de argumentação vem demonstrar que qualquer "espírito" mais zeloso, como Stendhal, não pode ficar satisfeito, pois principalmente o terceiro argumento de Euler não consegue provar ou mesmo justificar coerentemente que - por - = +. No fundo, este tipo de argumentação denota que Euler não tinha ainda conhecimentos suficientes para justificar estes resultados aceitalvelmente. Na mesma obra de Euler podemos verificar que ele entende os números negativos como sendo apenas uma quantidade que se pode representar por uma letra precedida do sinal - (menos). Euler não compreende ainda que os números negativos são quantidades menores que zero. 

  

<< VOLTAR PARA HISTÓRIA DA MATEMÁTICA

 

 

Curta nossa página nas redes sociais!


Chegou o DVD Matemática nas Profissões. Detalhes.

 

Mais produtos