Ensino Fundamental
 Ensino Médio
 Ensino Superior
 Trabalhos de Alunos
 Matemática Financeira
 Estatística
 Biografias Matemáticas
 História da Matemática
 Laifis de Matemática
 Softwares Matemáticos
 Softwares Online

 Shopping Matemático
 Só Vestibular
 Super Professor

 Só Exercícios
 Desafios Matemáticos
 Matkids
 Provas de Vestibular
 Provas Online

 Área dos Professores
 Comunidade
 Fóruns de Discussão
 Artigos Matemáticos
 Dicionário Matemático
 FAQ Matemática
 Dicas para Cálculos

 Jogos Matemáticos
 Mundo Matemático
 Histórias dos Usuários
 Curiosidades
 Absurdos Matemáticos
 Pérolas da Matemática
 Paradoxos
 Piadas
 Poemas
 Palíndromos

 Indicação de Livros
 Símbolos Matemáticos
 Frases Matemáticas
 Fale conosco

Busca geral

Pesquisa em todas as seções do site.


Gostou do site?

Recomende-o para um amigo.

Seu nome:

Nome do seu amigo:

E-mail do seu amigo:


Indicação de livros

Consulte periodicamente as obras indicadas.


10 - Medidas de dispersão

Introdução
No capítulo anterior, vimos algumas medidas de localização do centro de uma distribuição de dados. Veremos agora como medir a variabilidade presente num conjunto de dados através das seguintes medidas:

10.1- Medidas de dispersão
Um aspecto importante no estudo descritivo de um conjunto de dados, é o da determinação da variabilidade ou dispersão desses dados, relativamente à medida de localização do centro da amostra.
Supondo ser a média, a medida de localização mais importante, será relativamente a ela que se define a principal medida de dispersão - a variância, apresentada a seguir.

10.2- Variância 
Define-se a variância, como sendo a medida que se obtém somando os quadrados dos desvios das observações da amostra, relativamente à sua média, e dividindo pelo número de observações da amostra menos um.
   

10.3- Desvio-padrão 
Uma vez que a variância envolve a soma de quadrados, a unidade em que se exprime não é a mesma que a dos dados. Assim, para obter uma medida da variabilidade ou dispersão com as mesmas unidades que os dados, tomamos a raiz quadrada da variância e obtemos o desvio padrão: 
O desvio padrão é uma medida que só pode assumir valores não negativos e quanto maior for, maior será a dispersão dos dados. 
Algumas propriedades do desvio padrão, que resultam imediatamente da definição, são:
o desvio padrão será maior, quanta mais variabilidade houver entre os dados. 
   

Clique aqui para ver o exemplo 7

       

Voltar para o índice  -  Voltar para a seção Estatística

 

Curta nossa página nas redes sociais!


Chegou o DVD Matemática nas Profissões. Detalhes.

 

Mais produtos