Ensino Fundamental
 Ensino Médio
 Ensino Superior
 Trabalhos de Alunos
 Matemática Financeira
 Estatística
 Biografias Matemáticas
 História da Matemática
 Laifis de Matemática
 Softwares Matemáticos
 Softwares Online

 Shopping Matemático
 Só Vestibular
 Super Professor

 Só Exercícios
 Desafios Matemáticos
 Matkids
 Provas de Vestibular
 Provas Online

 Área dos Professores
 Comunidade
 Fóruns de Discussão
 Artigos Matemáticos
 Dicionário Matemático
 FAQ Matemática
 Dicas para Cálculos

 Jogos Matemáticos
 Mundo Matemático
 Histórias dos Usuários
 Curiosidades
 Absurdos Matemáticos
 Pérolas da Matemática
 Paradoxos
 Piadas
 Poemas
 Palíndromos

 Indicação de Livros
 Símbolos Matemáticos
 Frases Matemáticas
 Fale conosco

Busca geral

Pesquisa em todas as seções do site.


Gostou do site?

Recomende-o para um amigo.

Seu nome:

Nome do seu amigo:

E-mail do seu amigo:


Indicação de livros

Consulte periodicamente as obras indicadas.


11. Distribuição Normal

A distribuição normal é a mas importante distribuição estatística, 
considerando a questão prática e teórica. Já vimos que esse tipo de distribuição apresenta-se em formato de sino, unimodal, simétrica em relação a sua média.
Considerando a probabilidade de ocorrência, a área sob sua curva soma 100%. Isso quer dizer que a probabilidade de uma observação assumir um valor entre dois pontos quaisquer é igual à área compreendida entre esses dois pontos.


68,26% => 1 desvio
95,44% => 2 desvios
99,73% => 3 desvios


Na figura acima, tem as barras na cor marrom representando os desvios padrões. Quanto mais afastado do centro da curva normal, mais área compreendida abaixo da curva haverá. A um desvio padrão, temos 68,26% das observações contidas. A dois desvios padrões, possuímos 95,44% dos dados comprendidos e finalmente a três desvios, temos 99,73%. Podemos concluir que quanto maior a variablidade dos dados em relação à média, maior a probabilidade de encontrarmos o valor que buscamos embaixo da normal.
Propriedade 1:
"f(x) é simétrica em relação à origem, x = média = 0;
Propriedade 2:
"f(x) possui um máximo para z=0, e nesse caso sua ordenada vale 0,39;
Propriedade3:
"f(x) tende a zero quando x tende para + infinito ou - infinito;
Propriedade4:
"f(x) tem dois pontos de inflexão cujas abscissas valem média + DP e média - DP, ou quando z tem dois pontos de inflexão cujas abscissas valem +1 e -1.
Para se obter a probabilidade sob a curva normal, utilizamos a tabela de faixa central

Clique aqui para ver o exemplo 8

      

Voltar para o índice  -  Voltar para a seção Estatística

 

Curta nossa página nas redes sociais!


Chegou o DVD Matemática nas Profissões. Detalhes.

 

Mais produtos