Ensino Fundamental
 Ensino Médio
 Ensino Superior
 Trabalhos de Alunos
 Matemática Financeira
 Estatística
 Biografias Matemáticas
 História da Matemática
 Laifis de Matemática
 Softwares Matemáticos
 Softwares Online

 Shopping Matemático
 Só Vestibular
 Super Professor

 Só Exercícios
 Desafios Matemáticos
 Matkids
 Provas de Vestibular
 Provas Online

 Área dos Professores
 Comunidade
 Fóruns de Discussão
 Artigos Matemáticos
 Dicionário Matemático
 FAQ Matemática
 Dicas para Cálculos

 Jogos Matemáticos
 Mundo Matemático
 Histórias dos Usuários
 Curiosidades
 Absurdos Matemáticos
 Pérolas da Matemática
 Paradoxos
 Piadas
 Poemas
 Palíndromos

 Indicação de Livros
 Símbolos Matemáticos
 Frases Matemáticas
 Fale conosco

Busca geral

Pesquisa em todas as seções do site.


Gostou do site?

Recomende-o para um amigo.

Seu nome:

Nome do seu amigo:

E-mail do seu amigo:


Indicação de livros

Consulte periodicamente as obras indicadas.


Geometria Analítica: Circunferência
   

Determinação do centro e do raio da circunferência, dada a equação geral

   Dada a equação geral de uma circunferência, utilizamos o processo de fatoração de trinômio quadrado perfeito para transformá-la na equação reduzida e , assim, determinamos o centro e o raio da circunferência.

   Para tanto, a equação geral deve obedecer a duas condições:

  • os coeficientes dos termos x2 e y2 devem ser iguais a 1;

  • não deve existir o termo xy.

   Então, vamos determinar o centro e o raio da circunferência cuja equação geral é x2 + y2 - 6x + 2y - 6 = 0.

   Observando a equação, vemos que ela obedece às duas condições. Assim:

  • 1º passo: agrupamos os termos em x e os termos em y e isolamos o termo independente

x2 - 6x + _ + y2 + 2y + _ = 6

  • 2º passo: determinamos os termos que completam os quadrados perfeitos nas variáveis x e y, somando a ambos os membros as parcelas correspondentes

  • 3º passo: fatoramos os trinômios quadrados perfeitos

( x - 3 ) 2 + ( y + 1 ) 2 = 16

  • 4º passo: obtida a equação reduzida, determinamos o centro e o raio

Posição de um ponto em relação a uma circunferência

   Em relação à circunferência de equação ( x - a )2 + ( y - b )2 = r2, o ponto P(m, n) pode ocupar as seguintes posições:

a) P é exterior à circunferência

 

b) P pertence à circunferência

 

c) P é interior à circunferência

    Assim, para determinar a posição de um ponto P(m, n) em relação a uma circunferência, basta substituir as coordenadas de P na expressão ( x - a )2 + ( y - b )2 - r2:

  • se ( m - a)2 + ( n - b)2 - r2 > 0, então P é exterior à circunferência;
  • se ( m - a)2 + ( n - b)2 - r2 =    0, então P pertence à circunferência;
  • se ( m - a)2 + ( n - b)2 - r2 < 0, então P é interior à circunferência.
       

         

<< Voltar para seção Ensino médio

 

Curta nossa página nas redes sociais!


Chegou o DVD Matemática nas Profissões. Detalhes.

 

Mais produtos