Ensino Fundamental
 Ensino Médio
 Ensino Superior
 Trabalhos de Alunos
 Matemática Financeira
 Estatística
 Biografias Matemáticas
 História da Matemática
 Laifis de Matemática
 Softwares Matemáticos
 Softwares Online

 Shopping Matemático
 Só Vestibular
 Super Professor

 Só Exercícios
 Desafios Matemáticos
 Matkids
 Provas de Vestibular
 Provas Online

 Área dos Professores
 Comunidade
 Fóruns de Discussão
 Artigos Matemáticos
 Dicionário Matemático
 FAQ Matemática
 Dicas para Cálculos

 Jogos Matemáticos
 Mundo Matemático
 Histórias dos Usuários
 Curiosidades
 Absurdos Matemáticos
 Pérolas da Matemática
 Paradoxos
 Piadas
 Poemas
 Palíndromos

 Indicação de Livros
 Símbolos Matemáticos
 Frases Matemáticas
 Fale conosco

Busca geral

Pesquisa em todas as seções do site.


Gostou do site?

Recomende-o para um amigo.

Seu nome:

Nome do seu amigo:

E-mail do seu amigo:


Indicação de livros

Consulte periodicamente as obras indicadas.


Limites

Noção intuitiva de limite

Seja a função f(x)=2x+1. Vamos dar valores a x que se aproximem de 1, pela sua direita (valores maiores que 1) e pela esquerda (valores menores que 1) e calcular o valor correspondente de y:

x y = 2x + 1
1,5 4
1,3 3,6
1,1 3,2
1,05 3,1
1,02 3,04
1,01 3,02

x

y = 2x + 1

0,5 2
0,7 2,4
0,9 2,8
0,95 2,9
0,98 2,96
0,99 2,98

   Notamos que à medida que x se aproxima de 1, y se aproxima de 3, ou seja, quando x tende para 1  (x 1), y tende para 3 (y 3), ou seja:

    Observamos que quando x tende para 1, y tende para 3 e o limite da função é 3.
    Esse é o estudo do comportamento de f(x) quando x tende para 1 (x 1). Nem é preciso que x assuma o valor 1. Se f(x) tende para 3 (f(x) 3), dizemos que o limite de f(x) quando x 1 é 3, embora possam ocorrer casos em que para x = 1 o valor de f(x) não seja 3.
    De forma geral, escrevemos:

se, quando x se aproxima de a (x a), f(x) se aproxima de b (f(x)b).

                       

                        Como x² + x - 2 = (x - 1)(x + 2), temos:

                       

   Podemos notar que quando x se aproxima de 1 (x1), f(x) se aproxima de 3, embora para x=1 tenhamos f(x) = 2. o que ocorre é que procuramos o comportamento de y quando x1. E, no caso, y 3. Logo, o limite de f(x) é 3.

Escrevemos:

                         

   Se g: IR IR e g(x) = x + 2, g(x) = (x + 2) = 1 + 2 = 3, embora g(x)f(x) em x = 1. No entanto, ambas têm o mesmo limite.

<< Voltar para Ensino Superior

 

Curta nossa página nas redes sociais!


Chegou o DVD Matemática nas Profissões. Detalhes.

 

Mais produtos