Ensino Fundamental
 Ensino Médio
 Ensino Superior
 Trabalhos de Alunos
 Matemática Financeira
 Estatística
 Biografias Matemáticas
 História da Matemática
 Laifis de Matemática
 Softwares Matemáticos
 Softwares Online

 Shopping Matemático
 Só Vestibular
 Super Professor

 Só Exercícios
 Desafios Matemáticos
 Matkids
 Provas de Vestibular
 Provas Online

 Área dos Professores
 Comunidade
 Fóruns de Discussão
 Artigos Matemáticos
 Dicionário Matemático
 FAQ Matemática
 Dicas para Cálculos

 Jogos Matemáticos
 Mundo Matemático
 Histórias dos Usuários
 Curiosidades
 Absurdos Matemáticos
 Pérolas da Matemática
 Paradoxos
 Piadas
 Poemas
 Palíndromos

 Indicação de Livros
 Símbolos Matemáticos
 Frases Matemáticas
 Fale conosco

Busca geral

Pesquisa em todas as seções do site.


Gostou do site?

Recomende-o para um amigo.

Seu nome:

Nome do seu amigo:

E-mail do seu amigo:


Indicação de livros

Consulte periodicamente as obras indicadas.


 

Matemática e Música: em busca da harmonia

 

* Monografia apresentada por Larissa Suarez Peres
na Universidade do Grande ABC

 

 

1. Introdução: escalas musicais e relações matemáticas

 

Do ponto-de-vista acústico, os sons utilizados para produção de música (excetuando os sons de alguns instrumentos de percussão) possuem determinadas características físicas, tais como oscilações bem definidas (freqüências) e presença de harmônicos. Entende-se, no caso, por oscilações bem definidas o fato de que um som musical, na grande maioria das vezes, ocorre de forma sustentada (pouco ou muito), de maneira que sua característica de oscilação se mantém por alguns ou muitos ciclos, diferentemente dos ruídos e outros sons não musicais.

 

No que diz respeito à presença de harmônicos cabe lembrar que a maioria dos sons musicais não ocorre apenas em seu modo mais simples de vibração (modo fundamental), pois são compostos sempre deste modo (fundamental) e de mais outros, chamados de modos harmônicos, que nada mais são do que o corpo vibrante oscilando também com freqüências múltiplas inteiras (x2, x3, x4, etc) da freqüência do modo fundamental.

 

Os harmônicos presentes em um som são componentes extremamente importantes no processo musical, tanto na formação das escalas musicais, como na harmonia musical. Por causa dessas características naturais, sons com alturas (freqüências) diferentes, quando postos a ocorrer ao mesmo tempo, podem criar sensações auditivas esteticamente diferentes.

 

Em uma primeira análise, podemos entender que dois sons que mantêm uma relação inteira entre os valores de suas freqüências fundamentais certamente resultarão em uma sensação auditiva natural ou agradável, pelo fato de seus harmônicos estarem em "simpatia" ou "consonância". No caso específico em que a freqüência fundamental de um som (f1) é o dobro da freqüência fundamental de outro (f2), diz-se que o primeiro está uma oitava acima do segundo (f1=2. f2).

 

Se quisermos gerar dois sons musicais diferentes, que sejam perfeitamente consonantes, estes deverão manter uma relação de oitava, onde todos os harmônicos do som mais alto estarão em perfeita consonância com o som mais baixo. No entanto, sons gerados simultaneamente em alguns outros intervalos diferentes da oitava podem produzir sensação agradável aos nossos ouvidos, por conterem também uma boa parte de harmônicos coincidentes, que na realidade é o intervalo chamado de quinta, e que mantém uma relação de 3:2.

 

É claro que se fossem utilizados somente os intervalos de oitava e de quinta para criar sons em música, o resultado seria bastante pobre pela escassez de notas. Assim, várias civilizações procuraram desenvolver, científica e experimentalmente, gamas de freqüências dentro do intervalo de oitava, com as quais pudessem construir suas músicas. A essas gamas dá-se o nome de escalas musicais, e há uma variedade delas, baseadas em critérios diferentes para a definição das notas.

 

Intervalo
Relação
terça menor
terça
quarta
quinta
sexta menor
sexta
oitava
6:5 (1,200)
5:4 (1,250)
4:3 (1,333)
3:2 (1,500)
8:5 (1,600)
5:3 (1,667)
2:1 (2,000)

Intervalos consonantes

 

Além da oitava e da quinta, outros intervalos de sons também são considerados esteticamente consonantes pela maioria dos autores, e estão apresentados na tabela acima. Cabe ressaltar que os intervalos em questão foram representados por suas relações matemáticas no que diz respeito à relação harmônica. Tomemos como exemplo o caso do intervalo de quinta: sua freqüência é igual à freqüência do terceiro harmônico da nota de referência (três vezes a freqüência da fundamental), e é dividida por dois, de forma a abaixar uma oitava, para cair dentro da mesma oitava da nota de referência, daí a relação 3:2.


Os harmônicos de uma nota musical são precisamente esses sons parciais que compõem sua sonoridade, e a Série Harmônica desta mesma nota caracteriza-se pela seqüência de tais sons ordenada do grave ao agudo. A sonoridade de um instrumento ou de uma voz humana apresenta-se tanto mais brilhante quanto maior sua riqueza em harmônicos superiores, aquilo que nos faz atribuir adjetivos ao som produzindo por determinados instrumentos associa-se diretamente à distribuição dos harmônicos daquele som.


Com relação à produção e uso de harmônicos, os executantes de instrumentos de sopro podem obter o harmônico seguinte à fundamental bem como o posterior a este soprando seus instrumentos com maior intensidade, assim como os instrumentistas de corda produzem harmônicos tocando uma corda levemente em pontos adequados, o que a faz vibrar em determinadas seções associadas ao harmônio que se deseja evidenciar.

<< VOLTAR PARA MUNDO MATEMÁTICO

Curta nossa página nas redes sociais!


Chegou o DVD Matemática nas Profissões. Detalhes.

 

Mais produtos