Ensino Fundamental
 Ensino Médio
 Ensino Superior
 Trabalhos de Alunos
 Matemática Financeira
 Estatística
 Biografias Matemáticas
 História da Matemática
 Laifis de Matemática
 Softwares Matemáticos
 Softwares Online

 Shopping Matemático
 Só Vestibular
 Super Professor

 Só Exercícios
 Desafios Matemáticos
 Matkids
 Provas de Vestibular
 Provas Online

 Área dos Professores
 Comunidade
 Fóruns de Discussão
 Artigos Matemáticos
 Dicionário Matemático
 FAQ Matemática
 Dicas para Cálculos

 Jogos Matemáticos
 Mundo Matemático
 Histórias dos Usuários
 Curiosidades
 Absurdos Matemáticos
 Pérolas da Matemática
 Paradoxos
 Piadas
 Poemas
 Palíndromos

 Indicação de Livros
 Símbolos Matemáticos
 Frases Matemáticas
 Fale conosco

Busca geral

Pesquisa em todas as seções do site.


Gostou do site?

Recomende-o para um amigo.

Seu nome:

Nome do seu amigo:

E-mail do seu amigo:


Indicação de livros

Consulte periodicamente as obras indicadas.


 Função de 1º grau

  Definição

 Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados e a0.

 Na função f(x) = ax + b, o número a é chamado de coeficiente de x e o número b é chamado termo constante.

 Veja alguns exemplos de funções polinomiais do 1º grau:

 f(x) = 5x - 3, onde a = 5 e b = - 3
 f(x) = -2x - 7, onde a = -2 e b = - 7
 f(x) = 11x, onde a = 11 e b = 0

 

Gráfico

    O gráfico de uma função polinomial do 1º grau,  y = ax + b, com a0, é uma reta oblíqua aos eixos Ox e Oy.

    Exemplo:

    Vamos construir o gráfico da função y = 3x - 1:
    Como o gráfico é uma reta, basta obter dois de seus pontos e ligá-los com o auxílio de uma régua:

    a)    Para   x = 0, temos   y = 3 · 0 - 1 = -1; portanto, um ponto é (0, -1).
    b)    Para   y = 0, temos   0 = 3x - 1; portanto, e outro ponto é .

    Marcamos os pontos (0, -1) e no plano cartesiano e ligamos os dois com uma reta.

x y
0 -1
0

    Já vimos que o gráfico da função afim y = ax + b é uma reta.
    O coeficiente de x, a, é chamado coeficiente angular da reta e, como veremos adiante, a está ligado à inclinação da reta em relação ao eixo Ox.

    O termo constante, b, é chamado coeficiente linear da reta. Para x = 0, temos y = a · 0 + b = b. Assim, o coeficiente linear é a ordenada do ponto em que a reta corta o eixo Oy.

<< Voltar para Ensino médio

 

Curta nossa página nas redes sociais!


Chegou o DVD Matemática nas Profissões. Detalhes.

 

Mais produtos