Ensino Fundamental
 Ensino Médio
 Ensino Superior
 Trabalhos de Alunos
 Matemática Financeira
 Estatística
 Biografias Matemáticas
 História da Matemática
 Laifis de Matemática
 Softwares Matemáticos
 Softwares Online

 Shopping Matemático
 Só Vestibular
 Super Professor

 Só Exercícios
 Desafios Matemáticos
 Matkids
 Provas de Vestibular
 Provas Online

 Área dos Professores
 Comunidade
 Fóruns de Discussão
 Artigos Matemáticos
 Dicionário Matemático
 FAQ Matemática
 Dicas para Cálculos

 Jogos Matemáticos
 Mundo Matemático
 Histórias dos Usuários
 Curiosidades
 Absurdos Matemáticos
 Pérolas da Matemática
 Paradoxos
 Piadas
 Poemas
 Palíndromos

 Indicação de Livros
 Símbolos Matemáticos
 Frases Matemáticas
 Fale conosco

Busca geral

Pesquisa em todas as seções do site.


Gostou do site?

Recomende-o para um amigo.

Seu nome:

Nome do seu amigo:

E-mail do seu amigo:


Indicação de livros

Consulte periodicamente as obras indicadas.


Determinantes

   Como já vimos, matriz quadrada é a que tem o mesmo número de linhas e de colunas (ou seja, é do tipo nxn).

   A toda matriz quadrada está associado um número ao qual damos o nome de determinante.

   Dentre as várias aplicações dos determinantes na Matemática, temos:

  • resolução de alguns tipos de sistemas de equações lineares;

  • cálculo da área de um triângulo situado no plano cartesiano, quando são conhecidas as coordenadas dos seus vértices;

 

Determinante de 1ª ordem

   Dada uma matriz quadrada de 1ª ordem M=[a11], o seu determinante é o número real a11:

det M =Ia11I = a11

Observação: Representamos o determinante de uma matriz entre duas barras verticais, que não têm o significado de módulo.

   Por exemplo:

  • M= [5] det M = 5 ou I 5 I = 5
  • M = [-3] det M = -3 ou I -3 I = -3

 

Determinante de 2ª ordem

   Dada a matriz , de ordem 2, por definição o determinante associado a M, determinante de 2ª ordem, é dado por:

    Portanto, o determinante de uma matriz de ordem 2 é dado pela diferença entre o produto dos elementos da diagonal principal e o produto dos elementos da diagonal secundária. Veja o exemplo a seguir.

  

                       

Menor complementar

   Chamamos de menor complementar relativo a um elemento aij de uma matriz M, quadrada e de ordem n>1, o determinante MCij , de ordem n - 1, associado à matriz obtida de M quando suprimimos a linha e a coluna que passam por aij .

   Vejamos como determiná-lo pelos exemplos a seguir:

a) Dada a matriz , de ordem 2, para determinar o menor complementar relativo ao elemento a11(MC11), retiramos a linha 1 e a coluna 1:

Da mesma forma, o menor complementar relativo ao elemento a12 é:

b) Sendo , de ordem 3, temos:

<< Voltar para seção Ensino médio

 

Curta nossa página nas redes sociais!


Chegou o DVD Matemática nas Profissões. Detalhes.

 

Mais produtos