Ensino Fundamental
 Ensino Médio
 Ensino Superior
 Trabalhos de Alunos
 Matemática Financeira
 Estatística
 Biografias Matemáticas
 História da Matemática
 Laifis de Matemática
 Softwares Matemáticos
 Softwares Online

 Shopping Matemático
 Só Vestibular
 Super Professor

 Só Exercícios
 Desafios Matemáticos
 Matkids
 Provas de Vestibular
 Provas Online

 Área dos Professores
 Comunidade
 Fóruns de Discussão
 Artigos Matemáticos
 Dicionário Matemático
 FAQ Matemática
 Dicas para Cálculos

 Jogos Matemáticos
 Mundo Matemático
 Histórias dos Usuários
 Curiosidades
 Absurdos Matemáticos
 Pérolas da Matemática
 Paradoxos
 Piadas
 Poemas
 Palíndromos

 Indicação de Livros
 Símbolos Matemáticos
 Frases Matemáticas
 Fale conosco

Busca geral

Pesquisa em todas as seções do site.


Gostou do site?

Recomende-o para um amigo.

Seu nome:

Nome do seu amigo:

E-mail do seu amigo:


Indicação de livros

Consulte periodicamente as obras indicadas.


 

Uma sugestão para um novo ensino

As condições

    Tendo em vista a análise precedente, julgamos que o atual ensino de Matemática contribuiu pouco para a formação do educando (e acrescentaríamos que nem prepara muito bem para os exames vestibulares renovados) e acreditamos ser necessário buscar os objetivos expressos nos PCNEM.

    As bases legais e ideológicas deste ensino já estão dadas (LDB/96, DCNEM, PCNEM). Convém, então, considerar elementos específicos: conteúdos, enfoques, métodos pedagógicos. É isso que nos propomos a fazer, tentando sugerir um currículo prioritário para o ensino médio de Matemática, respeitando, porém, certas condições de contorno que convém explicitar:

i) nosso esboço curricular buscará corrigir e melhorar o ensino atual, evitando tanto quanto possível grandes descontinuidades e rupturas (por exemplo, nada de propor extinção de disciplinas ou drásticas mudanças de conteúdos), que, no momento, trariam mais confusão que progresso;

ii) acreditamos que as bases de uma nova proposta deveriam ser aceitáveis em geral, tanto para a escola noturna com três aulas semanais, quanto para a escola matutina com sete aulas semanais.

    A segunda condição necessita esclarecimentos. Com ela, não pretendemos o impossível, isto é, que escolas com cargas horárias muito diversas trabalhem os mesmos conteúdos. Na verdade, supomos que alguma diversidade no aprendizado da Matemática é inevitável e, mais ainda, desejável por que nem todos os educandos têm as mesmas aspirações. Destacamos que as DCNEM previram a autonomia de cada escola, cuja proposta pedagógica ocupará 25% do tempo escolar de maneira mais conveniente. Portanto, o que chamamos de "proposta aceitável" envolveria um elenco de conteúdos prioritários de aprofundamento variável de acordo com a escola. Em alguns casos, ele se constituiria no programa total da disciplina por que, mesmo num enfoque pouco profundo, aborda os conhecimento necessários ao cidadão educado, trabalha as competências desejadas, além de permitir ao educando ter alguma idéia sobre a natureza da Matemática. Para outras escolas, a seleção prioritária seria apenas uma base para estudos mais específicos e avançados da disciplina.

    Além dessas condições, vamos ter presente que o ensino médio é etapa final de uma formação básica e, portanto, geral, não especializada. O aspecto "generalista" evita a abordagem de minúcias técnicas da disciplina; o aspecto "terminal", leva a dar atenção àqueles que encerram sua formação matemática no âmbito escolar, os quais devem ter, ao menos, a oportunidade de discutir o significado do saber que os ocupou durante onze anos letivos e qual sua rela importância.

Conteúdos e enfoques

    Uma seleção de conteúdos é necessária porque, tendo em vista os objetivos, alguns conteúdos são mais adequados que outros. (Não é claro, por exemplo, que a teoria dos determinantes não pode ter a mesma prioridade que as noções de estatística?) O que talvez não seja tão evidente para nós, professores, porque estamos acostumados há muito tempo com os mesmos programas, é a diversidade de escolhas existentes  e a possibilidade de alterar a atual seleção. Sem essa percepção fica difícil aceitar mudanças.

    De fato, há muitos tópicos matemáticos que podem ser classificados como adequados ao nível médio de ensino, mais do que seria possível ensinar mesmo em cursos mais extensos que os nossos. Quando examinamos sistemas escolares de outros países, verificamos que em cada caso foi feita uma escolha particular, que supostamente deve atender às necessidades locais. Por exemplo, os alunos franceses devem aprender derivação, integração e correlação estatística, mas não se preocupam com determinantes nem estudam quase nada de geometria espacial que aparece em nossos currículos. Já nos Estados Unidos a programação é extensa, parece-se com a nossa, mas boa parte dos tópicos faz parte de cursos optativos. A maioria dos estudantes norte-americanos acaba estudando bem menos matemática, em comparação aos nossos.

    Admitindo que há um amplo leque de conteúdos e que temos a possibilidade de escolha, podemos pensar na seleção. Segundo o PCNEM o critério central para isso "é o da contextualização e da interdisciplinaridade, ou seja, é o potencial de um tema permitir conexões entre diversos conceitos matemáticos e entre diferentes formas de pensamento matemático, ou, ainda, a relevância cultural do tema, tanto no que diz respeito a suas aplicações dentro ou fora da Matemática, como a sua importância histórica dentro do desenvolvimento da própria ciência".

    No entanto, não basta escolher conteúdos. Faz-se necessário determinar com que enfoque ele será trabalhado em sala de aula. O enfoque engloba a forma de abordagem e tratamento de cada assunto, bem como as ênfases que serão estabelecidas em seu estudo. Vamos esclarecer um pouco mais, considerando o estudo inicial de funções que ocorre no ensino médio.

    Um enfoque possível desse conteúdo, adotado pela maioria dos livros didáticos, consiste em apresentar as funções como uma relação particular entre elementos de dois conjuntos, que é ilustrada de maneira típica por diagramas com flechinhas. Seguem-se definições de conceitos como domínio, contra-domínio, imagem (e, às vezes, funções crescentes, pares, etc.) e exercícios pedindo que se encontre, digamos, a imagem, em funções abstratas, que não estão ligadas a nenhuma aplicação. Depois, passa-se ao estudo de funções específicas, começando pelas funções (polinomiais) do 1 e do 2 graus.

    Nesse tratamento, enfatizam-se problemas cujo contexto é exclusivamente matemático, tais como determinação de domínios e imagens, estudo de variação do sinal da função, etc., para os quais estabelecem-se procedimentos de resolução mais ou menos algorítmicos. Pode surgir alguns problemas "de aplicação", como a determinação da área máxima de um retângulo de perímetro dado, mas eles não constituem a parte fundamental do aprendizado.

    Um outro enfoque do mesmo conteúdo as funções como maneira de exprimir uma relação entre grandezas variáveis. Idéias como domínio, imagem e contra-domínio são apresentadas com brevidade, somente em situações significativas, e parte-se para o estudo de variações específicas envolvendo grandezas do mundo físico, econômico, etc. As funções estudadas são as mesmas que ocorrem no primeiro enfoque, mas a ênfase é posta no tipo de variação: linear, quadrática, exponencial, etc.

    Neste caso, os problemas mais importantes têm o objetivo de encontrar modelos matemáticos para certas variações, expressá-la algebricamente, calcular máximos e mínimos, etc.

    Usando a conceituação da Didática da Matemática dos franceses, no primeiro enfoque, as funções são objeto de estudo; no segundo, elas são ferramentas para estudar a realidade. Os objetos matemáticos podem ser sempre estudados num contexto matemático, enquanto que as ferramentas precisam ter como contexto as várias ciências.

    Supomos que os parágrafos anteriores esclareçam porque o enfoque dos conteúdos contribui para definir o caráter de um de Matemática. No exemplo dado, parece claro que cada um dos enfoques descritos tem sua importância, mas, em relação ao Ensino Médio, acreditamos que o segundo enfoque esteja mais de acordo com as propostas do PCNEM, seja mais significativo para os estudantes, tendo, portanto, maior potencial educativo.        

Continuar o artigo >>

 

Curta nossa página nas redes sociais!


Chegou o DVD Matemática nas Profissões. Detalhes.

 

Mais produtos