Ensino Fundamental
 Ensino Médio
 Ensino Superior
 Trabalhos de Alunos
 Matemática Financeira
 Estatística
 Biografias Matemáticas
 História da Matemática
 Laifis de Matemática
 Softwares Matemáticos
 Softwares Online

 Shopping Matemático
 Só Vestibular
 Super Professor

 Só Exercícios
 Desafios Matemáticos
 Matkids
 Provas de Vestibular
 Provas Online

 Área dos Professores
 Comunidade
 Fóruns de Discussão
 Artigos Matemáticos
 Dicionário Matemático
 FAQ Matemática
 Dicas para Cálculos

 Jogos Matemáticos
 Mundo Matemático
 Histórias dos Usuários
 Curiosidades
 Absurdos Matemáticos
 Pérolas da Matemática
 Paradoxos
 Piadas
 Poemas
 Palíndromos

 Indicação de Livros
 Símbolos Matemáticos
 Frases Matemáticas
 Fale conosco

Busca geral

Pesquisa em todas as seções do site.


Gostou do site?

Recomende-o para um amigo.

Seu nome:

Nome do seu amigo:

E-mail do seu amigo:


Indicação de livros

Consulte periodicamente as obras indicadas.


Integrais

Integrais indefinidas

Da mesma forma que a adição e a  subtração, a multiplicação e a divisão, a operação inversa da derivação é a antiderivação ou integração indefinida.

Dada uma função g(x), qualquer função f'(x) tal que f'(x) = g(x) é chamada integral indefinida ou antiderivada de f(x).

Exemplos:

  1. Se  f(x) = , então é a derivada de f(x). Uma das antiderivadas de f'(x) = g(x) = x4 é .
       
  2. Se f(x) = x3, então f'(x) = 3x2 = g(x). Uma das antiderivadas ou integrais indefinidas de g(x) = 3x2 é f(x) = x3.
       
  3. Se f(x) = x3 + 4, então f'(x) = 3x2 = g(x). Uma das antiderivadas ou integrais indefinidas de g(x) = 3x2 é f(x) = x3 + 4.

   

   Nos exemplos 2 e 3 podemos observar que tanto x3 quando x3+4 são integrais indefinidas para 3x2. A diferença entre quaisquer destas funções (chamadas funções primitivas) é sempre uma constante, ou seja, a integral indefinida de 3x2 é  x3+C, onde C é uma constante real.

 

 Propriedades das integrais indefinidas

    São imediatas as seguintes propriedades:

1ª.    , ou seja, a integral da soma ou diferença é a soma ou diferença das integrais.

2ª.   , ou seja, a constante multiplicativa pode ser retirada do integrando.

3ª.    , ou seja, a derivada da integral de uma função é a própria função.

 

 Integração por substituição

Seja expressão

Através da substituição u=f(x) por u' = f'(x) ou , ou ainda, du = f'(x) dx, vem:

,

admitindo que se conhece .

O método da substituição de variável exige a identificação de u e u' ou u e du na integral dada.
   

<< Voltar para Ensino Superior

 

Curta nossa página nas redes sociais!


Chegou o DVD Matemática nas Profissões. Detalhes.

 

Mais produtos